3.3.84 \(\int \frac {(c+d x^3)^{3/2}}{x (8 c-d x^3)^2} \, dx\)

Optimal. Leaf size=85 \[ \frac {3 \sqrt {c+d x^3}}{8 \left (8 c-d x^3\right )}-\frac {3 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{32 \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 \sqrt {c}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {446, 98, 156, 63, 208, 206} \begin {gather*} \frac {3 \sqrt {c+d x^3}}{8 \left (8 c-d x^3\right )}-\frac {3 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{32 \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x^3)^(3/2)/(x*(8*c - d*x^3)^2),x]

[Out]

(3*Sqrt[c + d*x^3])/(8*(8*c - d*x^3)) - (3*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(32*Sqrt[c]) - ArcTanh[Sqrt[c
 + d*x^3]/Sqrt[c]]/(96*Sqrt[c])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (c+d x^3\right )^{3/2}}{x \left (8 c-d x^3\right )^2} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {(c+d x)^{3/2}}{x (8 c-d x)^2} \, dx,x,x^3\right )\\ &=\frac {3 \sqrt {c+d x^3}}{8 \left (8 c-d x^3\right )}-\frac {\operatorname {Subst}\left (\int \frac {-c^2 d+\frac {7}{2} c d^2 x}{x (8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{24 c d}\\ &=\frac {3 \sqrt {c+d x^3}}{8 \left (8 c-d x^3\right )}+\frac {1}{192} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )-\frac {1}{64} (9 d) \operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=\frac {3 \sqrt {c+d x^3}}{8 \left (8 c-d x^3\right )}-\frac {9}{32} \operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )+\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{96 d}\\ &=\frac {3 \sqrt {c+d x^3}}{8 \left (8 c-d x^3\right )}-\frac {3 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{32 \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 100, normalized size = 1.18 \begin {gather*} \frac {36 \sqrt {c} \sqrt {c+d x^3}+\left (9 d x^3-72 c\right ) \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )+\left (d x^3-8 c\right ) \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 \sqrt {c} \left (8 c-d x^3\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^3)^(3/2)/(x*(8*c - d*x^3)^2),x]

[Out]

(36*Sqrt[c]*Sqrt[c + d*x^3] + (-72*c + 9*d*x^3)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])] + (-8*c + d*x^3)*ArcTanh[
Sqrt[c + d*x^3]/Sqrt[c]])/(96*Sqrt[c]*(8*c - d*x^3))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.08, size = 85, normalized size = 1.00 \begin {gather*} \frac {3 \sqrt {c+d x^3}}{8 \left (8 c-d x^3\right )}-\frac {3 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{32 \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(c + d*x^3)^(3/2)/(x*(8*c - d*x^3)^2),x]

[Out]

(3*Sqrt[c + d*x^3])/(8*(8*c - d*x^3)) - (3*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(32*Sqrt[c]) - ArcTanh[Sqrt[c
 + d*x^3]/Sqrt[c]]/(96*Sqrt[c])

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 220, normalized size = 2.59 \begin {gather*} \left [\frac {9 \, {\left (d x^{3} - 8 \, c\right )} \sqrt {c} \log \left (\frac {d x^{3} - 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + {\left (d x^{3} - 8 \, c\right )} \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right ) - 72 \, \sqrt {d x^{3} + c} c}{192 \, {\left (c d x^{3} - 8 \, c^{2}\right )}}, \frac {{\left (d x^{3} - 8 \, c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right ) + 9 \, {\left (d x^{3} - 8 \, c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) - 36 \, \sqrt {d x^{3} + c} c}{96 \, {\left (c d x^{3} - 8 \, c^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(-d*x^3+8*c)^2,x, algorithm="fricas")

[Out]

[1/192*(9*(d*x^3 - 8*c)*sqrt(c)*log((d*x^3 - 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + (d*x^3 - 8*c)*
sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 72*sqrt(d*x^3 + c)*c)/(c*d*x^3 - 8*c^2), 1/96*((d
*x^3 - 8*c)*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) + 9*(d*x^3 - 8*c)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*
sqrt(-c)/c) - 36*sqrt(d*x^3 + c)*c)/(c*d*x^3 - 8*c^2)]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 70, normalized size = 0.82 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{96 \, \sqrt {-c}} + \frac {3 \, \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{32 \, \sqrt {-c}} - \frac {3 \, \sqrt {d x^{3} + c}}{8 \, {\left (d x^{3} - 8 \, c\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(-d*x^3+8*c)^2,x, algorithm="giac")

[Out]

1/96*arctan(sqrt(d*x^3 + c)/sqrt(-c))/sqrt(-c) + 3/32*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/sqrt(-c) - 3/8*sqrt
(d*x^3 + c)/(d*x^3 - 8*c)

________________________________________________________________________________________

maple [C]  time = 0.17, size = 956, normalized size = 11.25

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c)^(3/2)/x/(-d*x^3+8*c)^2,x)

[Out]

1/8/c*d*(-3*(d*x^3+c)^(1/2)/(d*x^3-8*c)*c/d+2/3*(d*x^3+c)^(1/2)/d+1/2*I/d^3*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*
(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^
(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1
/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/
2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/
3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d
^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3
^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))-1/64/c^2*d*(2/9*(d*x^3+c)^(1/2)*x^3+56/9*(d*x^3
+c)^(1/2)*c/d+3*I*c/d^3*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(
-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*
x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d
^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(
1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c
*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/
d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^
3*d-8*c)))+1/64/c^2*(2/9*(d*x^3+c)^(1/2)*d*x^3+8/9*(d*x^3+c)^(1/2)*c-2/3*c^(3/2)*arctanh((d*x^3+c)^(1/2)/c^(1/
2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}}}{{\left (d x^{3} - 8 \, c\right )}^{2} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(-d*x^3+8*c)^2,x, algorithm="maxima")

[Out]

integrate((d*x^3 + c)^(3/2)/((d*x^3 - 8*c)^2*x), x)

________________________________________________________________________________________

mupad [B]  time = 4.72, size = 101, normalized size = 1.19 \begin {gather*} \frac {3\,\sqrt {d\,x^3+c}}{8\,\left (8\,c-d\,x^3\right )}+\frac {\ln \left (\frac {{\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )}^3\,\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )\,{\left (10\,c+d\,x^3-6\,\sqrt {c}\,\sqrt {d\,x^3+c}\right )}^9}{x^6\,{\left (8\,c-d\,x^3\right )}^9}\right )}{192\,\sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^3)^(3/2)/(x*(8*c - d*x^3)^2),x)

[Out]

(3*(c + d*x^3)^(1/2))/(8*(8*c - d*x^3)) + log((((c + d*x^3)^(1/2) - c^(1/2))^3*((c + d*x^3)^(1/2) + c^(1/2))*(
10*c + d*x^3 - 6*c^(1/2)*(c + d*x^3)^(1/2))^9)/(x^6*(8*c - d*x^3)^9))/(192*c^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c)**(3/2)/x/(-d*x**3+8*c)**2,x)

[Out]

Timed out

________________________________________________________________________________________